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Poland–Scheraga models were introduced to describe the DNA denaturation
transition. We give a rigorous and refined discussion of a family of these
models. We derive possible scaling functions in the neighborhood of the phase
transition point and review common examples. We introduce a self-avoiding
Poland–Scheraga model displaying a first order phase transition in two and
three dimensions. We also discuss exactly solvable directed examples. This
complements recent suggestions as to how the Poland–Scheraga class might be
extended in order to display a first order transition, which is observed experi-
mentally.
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1. INTRODUCTION

When a solution of DNA is heated, the double stranded molecules dena-
ture into single strands. In this process, looping out of AT rich regions of
the DNA segments first occurs, followed eventually by separation of the
two strands as the paired segments denature. This denaturation process
corresponds to a phase transition. (35)

A simple model of the DNA denaturation transition was introduced
in 1966 by Poland and Scheraga (30, 31) (hereinafter referred to as PS) and
refined by Fisher. (10, 11) The model consists of an alternating sequence
(chain) of straight paths and loops, which idealize denaturing DNA, con-
sisting of a sequence of double stranded and single stranded molecules. An



attractive energy is associated with paths. Interactions between different
parts of a chain and, more generally, all details regarding real DNA such as
chemical composition, stiffness or torsion, are ignored. It was found that
the phase transition is determined by the critical exponent c of the under-
lying loop class. Due to the tractability of the problem of random loops,
that version of the problem was initially studied by PS. (31) The model
displays a continuous phase transition in both two and three dimensions.
It was argued (10) that replacing random loops by self-avoiding loops,
suggested as a more realistic representation accounting for excluded
volume effects within each loop, sharpens the transition, but does not
change its order.

However, the sharp jumps observed in the UV absorption rate in
DNA melting3 experiments, (35) which correspond to a sudden breaking of

3 In recent years, a number of other properties of DNA molecules have been studied by
refined techniques such as optical tweezers and atomic force microscopy, and theoretical
descriptions of underlying effects such as unzipping (3, 21, 23, 26, 27) have been proposed. These
will not be discussed here.

large numbers of base pairs, indicated that a first order phase transition
would be the appropriate description. The question whether such an
asymptotic description, which implies very long chains, is valid for rela-
tively short DNA sequences, has been discussed recently. (16, 22) Nevertheless,
a directed extension of the PS model, being essentially a one-dimensional
Ising model with statistical weighting factors for internal loops, is widely
used today and yields good coincidence of simulated melting curves with
experimental curves for known DNA sequences. (4, 5, 35) Another recent
application of PS models analyses the role of mismatches in DNA dena-
turation. (13) A numerical approach to DNA denaturation, which we will
not discuss further, uses variants of the Peyrard–Bishop model, (29, 34) a
Hamiltonian model of two harmonic chains coupled by a Morse potential.

With the advent of efficient computers, it has more recently been pos-
sible to simulate analytically intractable models extending the PS class,
which are assumed to be more realistic representations of the biological
problem. One of these is a model of two self-avoiding and mutually avoid-
ing walks, with an attractive interaction between different walks at corre-
sponding positions in each walk. (1, 3, 8, 9) The model exhibits a first order
phase transition in d=2 and d=3. The critical properties of the model
are described by an exponent cŒ related to the loop length distribu-
tion, (1, 3, 8, 20, 21, 23) see also Fisher’s review article. (11) This exponent is called c
again. Indeed, for PS models, it coincides with the loop class exponent c if
1 < c < 2, see below. Within a refined model, where different binding
energies for base pairs and stiffness are taken into account, the exponent cŒ
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seems to be largely independent of the specific DNA sequence and of the
stiffness of paired walk segments corresponding to double stranded DNA
parts. (8) There are, however, no simulations of melting curves for known
DNA sequences which are compared to experimental curves for this model.

An approximate analytic derivation of the exponent related to this
new model was given by Kafri et al. (20, 21, 23) using the theory of polymer
networks. They estimated the excluded volume effect arising from the
interaction between a single loop and two attached walks. This approach
(refined recently (3)) yields an approximation to the loop length distribution
exponent cŒ, which agrees well with simulation results of interacting self-
avoiding walk pairs. (1, 3, 8) There is a recent debate about the relevance of
this approximation to real DNA. (16, 22) The polymer network approach, as
initiated previously, (20) led to a number of related applications. (2, 3, 17, 21, 23)

In this article, we reconsider PS models for three principal reasons.
Firstly, the older articles are short in motivating the use of particular loop
classes, which may be misleading in drawing conclusions about the ther-
modynamic effects of different loop classes. In fact, the loop classes dis-
cussed in the early approaches (10, 31) are classes of rooted loops and lead to
chains which are not self-avoiding. This seems unsatisfactory from a
biological point of view, since real DNA is self-avoiding. Secondly, the
common view holds that PS models with self-avoiding loops cannot display
a first order transition in two or three dimensions. In fact, this view led to
extending the PS class (9, 20, 21, 23) in order to find a model with a first order
transition. However this view is incorrect, as we demonstrate by a self-
avoiding PS model with self-avoiding loops. Thirdly, the two exponents c
and cŒ, extracted from different expressions as described above, are used in
the literature without distinction, although there are subtle differences,
which we will point out.

This paper is organized as follows. In the next section, we give a rig-
orous discussion of PS models and their phase transitions. We derive the
scaling functions which describe the behavior below the critical tempera-
ture, as the critical point is approached. We then derive the loop statistics,
thereby analyzing the occurrence of the loop class exponent in the loop
length distribution. The third section reviews the prevailing PS models,
with emphasis on motivation for the underlying loop classes. We then
introduce a self-avoiding PS model displaying a first order phase transition
in two and three dimensions. In Section 5, exactly solvable directed PS
models are discussed. We will give explicit expressions for generating func-
tions. The critical behavior of some of these models has been analyzed
previously by different methods. (24–27) This is followed by a discussion of
models extending the PS class. We conclude with a discussion of some open
questions.
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2. POLAND–SCHERAGA MODELS: GENERAL FORMALISM

We define PS models and consider analytical properties of their free
energies, thereby refining previous expositions (10, 11, 30, 31) in a rigorous
manner. We analyze phase transitions, extract the asymptotic behavior of
chains at temperatures near the phase transition by means of scaling func-
tions, and consider the loop length distribution of chains.

2.1. Definition of the Model

We consider a discrete model, defined on the hypercubic lattice Zd.
Double stranded DNA segments are modeled by paths, and single stranded
DNA segments are modeled by loops on the edges of the lattice. Each loop
is assumed to have two marked vertices to indicate where paths are
attached. (Like PS, we do not a priori assume the ‘‘DNA condition’’ that the
marked vertices divide the loop into parts of equal lengths. There is a recent
discussion about the effect of mismatches. (13)) Any alternating sequence of
paths and (marked) loops is called a chain. A PS model consists of all chains
obtained by concatenation of paths and loops from a given path class and a
given loop class, where the initial segment and the final segment of a chain
are both paths. (The case of an open end affects the behavior above the
critical temperature(22) and will not be considered here. (3)) Note that, in
general, such chains are not self-avoiding, in contrast to real DNA. Self-
avoidance may be violated by paths, by loops, or by the way segments are
concatenated. A chain is called segment-avoiding if there are no overlaps,
i.e., every two non-neighboring segments have no vertex in common, and
every two neighboring segments have exactly the marked vertex in common.
We call a PS model self-avoiding if paths and loops are self-avoiding and if
all chains of the model are segment-avoiding. We will discuss below several
examples of self-avoiding PS models, which arise from self-avoiding walks.

The requirement of self-avoidance restricts the admissible path classes
and loop classes. A simple subclass of self-avoiding PS models are directed PS
models: We call a chain directed if there is a preferred direction such that the
order of the chain segments induces the same order on the vertex coordinates
(w.r.t. the preferred direction), for each pair of vertices taken from two different
chain segments. Such chains are then segment-avoiding. We call a PS model
directed if paths, loops and chains are directed. We will discuss below several
examples of directed PS models which arise from classes of directed walks.

For a given PS model, let zm, n denote the number of chain configura-
tions with m contacts and length n. The generating function is defined by

Z(x, w)=C
m, n

zm, nwmxn, (2.1)
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where the activity x is conjugate to the chain length n. The Boltzmann
factor w=e−E/kT takes into account the attractive interaction (achieved by
setting the energy E < 0) between bonds. T is the temperature, and k is
Boltzmann’s constant. Over the relevant temperature range 0 < T < ., we
have . > w > 1. Note that there is no interaction between different seg-
ments in a chain.

The generating function Z(x, w) can be expressed in terms of the gen-
erating functions for paths V(x) and loops U(x). These are

V(x)= C
.

n=0
bnxn, U(x)= C

.

n=1
p2nxn, (2.2)

where bn is the number of paths of length n, and p2n is the number of loops4

4 In simulations of melting curves like MELTSIM, (4, 5) a cooperative parameter s % 10−5 is
used. In our context, this amounts to replacing the loop generating function U(x) by sU(x).

of length 2n. Due to the chain structure, we get a geometric series in
V(wx) U(x),

Z(x, w)=
V(wx)

1 − U(x) V(wx)
= C

.

n=1
Zn(w) xn. (2.3)

Since we want to analyze phase transitions of the model, which can only
occur in the infinite system, we define the free energy of the model as

f(w)= lim
n Q .

1
n

log Zn(w)=−log xc(w), (2.4)

where, for fixed w, xc(w) is the radius of convergence of Z(x, w). Conca-
tenation arguments and supermultiplicative inequalities can be used to
show that the free energy exists. (18) We will alternatively investigate prop-
erties of the free energy in terms of the generating functions for paths and
loops.5 Throughout the paper, we employ the following assumption.

5 The reader may find it illuminating in following this very general discussion that now follows
to refer to a specific model, discussed in Section 5.1.

Assumption 1. Assume that the generating functions U(x) and
V(x), defined in (2.2), have radius of convergence xU and xV, respectively,
where 0 < xU < xV [ 1. At the critical point x=xV, assume that V(x−

V ) :=
limx Q x−

V
V(x)=..

Remark. U(x) is a generating function (i.e., a series with non-
negative coefficients), such that U(x) and the derivative UŒ(x) are strictly

Poland–Scheraga Models and the DNA Denaturation Transition 929



positive for 0 < x < xU . A corresponding statement holds for V(x). The
assumption that 0 < xU < 1 reflects the requirement that the number of
configurations p2n grows exponentially in length. The models commonly
discussed (10, 11, 21, 30, 31) have xV=1 and V(0)=1. For loops and paths of
the same type, we have xU=x2

V < xV < 1, see also the examples discussed
below. The assumption V(x −

V )=. is satisfied for typical classes of paths.
Note that typically U(x −

U ) :=lim x Q x−
U

U(x) < ., but there are loop
classes where U(x −

U )=. such as convex polygons. (6) We have U(0)=0
by definition.

The radius of convergence xc(w) of Z(x, w) is the minimum of the
radius of convergence of U(x) V(wx) and the point x1(w) where the
denominator in (2.3) vanishes. Define F(x, w) :=U(x) V(wx). As a func-
tion of argument x, F(x, w) is continuous and monotonically increasing
for 0 < x < min(xU, xV/w). Note that F(0, w)=0. If w \ xV/xU, then
limx Q xV/w F(x, w)=., such that there exists a unique solution x1(w) < xU

with F(x1(w), w)=1. Assume that 1 [ w < xV/xU. If U(x−
U)=., there

exists a unique solution x1(w) < xU. If U(x−
U) < . and U(x−

U) V(xU) \ 1,
we have F(xU, w) \ 1 for all w \ 1, i.e., there exists a unique solution
x1(w) < xU. If U(x−

U) < . and U(x−
U) V(xU) < 1, we define wc > 1 by the

condition U(x−
U) V(wc xU)=1. Then, for w \ wc, we have a unique solu-

tion x1(w) < xU. If w < wc, there is no such solution, and the dominant
singularity of Z(x, w) occurs at x=xU. We thus proved the following
theorem.

Theorem 1. If Assumption 1 is satisfied, the PS model (2.3) has free
energy

f(w)=˛ − log xc(w) (wc [ w < .)

− log xU (1 < w < wc),
(2.5)

where the radius of convergence xc(w) of Z(x, w) is, for wc [ w < ., the
unique positive solution of

U(xc(w)) V(w xc(w))=1. (2.6)

If U(x−
U) :=limx Q x−

U
U(x)=. or U(x−

U) V(xU) \ 1, we have wc=1.
Otherwise, wc > 1 is implicitly given by U(x−

U) V(wc xU)=1.

Remark. If wc > 1, this point is a critical point, see the following
section.
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2.2. Phase Transitions

For w > wc, there is no phase transition, since the radius of conver-
gence xc(w) > 0 is analytic for wc < w < ., as can be inferred from (2.6).
A necessary condition for a phase transition at a finite temperature wc > 1
is U(x−

U) V(xU) < 1. The nature of the transition at w=wc > 1 is exhibited
by the fraction of shared bonds h(w)=w df(w)

dw , which is defined for w ] wc.
Note that h(w)=0 for w < wc. For w > wc, we have

h(w)=−w
x −

c(w)
xc(w)

=w 1UŒ

U
V
VŒ

+w2
−1

> 0. (2.7)

Consider the limit w Q w+
c . We have 0 < V < ., since UV=1 and U is

finite. Since V(x) is a generating function, this implies 0 < VŒ < .. If
UŒ(x−

U)=., it follows that h(w) Q 0, such that the phase transition is con-
tinuous. If UŒ(x−

U) < ., h(w) Q hc > 0, such that the phase transition is of
first order. This leads to the following statement.

Theorem 2. Let Assumption 1 be satisfied. If U(x−
U)=. or

U(x−
U) V(xU) \ 1, the PS model (2.3) has no phase transition at finite tem-

perature. Otherwise, if U(x−
U) < . and UŒ(x−

U) < ., a continuous phase
transition will occur at w=wc > 1 defined in Theorem 1. If U(x−

U) < . and
UŒ(x−

U)=., a first order phase transition will occur at w=wc > 1 defined
in Theorem 1.

Remark. The phase transition condition U(x−
U) V(xU) < 1 is typi-

cally satisfied in more realistic models, where U(x) is multiplied by the
cooperativity parameter s % 10−5.

We conclude that the nature of the transition is determined by the
singularity of the loop generating function U(x) at x=xU. It can be more
directly related to the asymptotic properties of loops, which are typically of
the form6

6 An ’ Bn for n Q . means that lim n Q . An/Bn=1. Similarly, f(x) ’ g(x) for x Q xc means
that limx Q xc

f(x)/g(x)=1.

p2n ’ Ax−n
U n−c (n Q .), (2.8)

for some constants A > 0 and c ¥ R. The exponent c determines the singu-
larity at x=xU, which is, to leading order and for c ¥ Q0N, algebraic. This
specializes Theorem 2.
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Proposition 1. Let Assumption 1 be satisfied and assume that, for
c ¥ R0N, the singular part of U(x) is, as x Q x−

U , asymptotically given by

U (sing)(x) ’ U0(xU − x)c − 1 (x Q x−
U) (2.9)

for some constant U0 ] 0. Then, the PS model (2.3) has no phase transition
if 0 < c < 1 or if U(x−

U) V(xU) \ 1. Otherwise, a continuous phase transi-
tion occurs for 1 < c < 2, and a first order transition occurs if c > 2, at
w=wc > 1 defined in Theorem 1.

Remark. If c=1 in (2.8), we get a logarithmic singularity in U(x),
hence no phase transition. If c=2 in (2.8), we get a logarithmic singularity
in the derivative UŒ(x), resulting in a continuous phase transition. See also
Fisher. (11)

2.3. Scaling Functions

In the vicinity of a phase transition point, critical behavior of the form

Z(x, w) ’ (xc − x)−h F((w − wc)/(xc − x)f) (x, w) Q (x−
c , w+

c ), (2.10)

uniformly in w, is expected with critical exponents h and f. Here F(s) is a
scaling function which only depends on the combined argument s=(w− wc)/
(xc − x)f. The scaling function is extracted from the generating function
Z(x, w) by replacing w using the variable s of combined argument and
expanding to leading order in xc − x. To this end, let us assume as in (2.9)
that U(x) behaves as

U(x)=U(x−
U)+U0(xU − x)c − 1+o((xU − x)c − 1) (x Q x−

U), (2.11)

and 1 < c ¥ R0N. In this case, the constant U0 is negative. (If c < 1, no
phase transition occurs at positive temperature according to the considera-
tions above.) We have the following result.

Theorem 3. Let Assumption 1 be satisfied. If the leading singularity
of the loop generating function U(x) is of the form (2.11) with an exponent
c > 1 and if U(x−

U) V(xU) [ 1, the PS model (2.3) has critical exponents and
scaling function (2.10)
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h=f=c − 1, F(s)=
1

|U0 | − U2(x−
U) VŒ(wc xU) xUs

(1 < c < 2),

h=f=1, F(s)=
1

U2(x−
U) VŒ(wc xU)[wc − xUs]

(c > 2),

(2.12)

where wc \ 1 is implicitly given by U(x−
U) V(wc xU)=1.

Remark. If c > 2, the critical exponents are independent of c. In
both cases, the scaling function is proportional to Fa(s)=1/(1 − as) with a
positive constant a.

It can be shown (18) that under mild assumptions such a scaling func-
tion implies a certain asymptotic behavior of the function Zn(w) for large n.
That is to say,

Zn(w) ’ x−n − h
c nh − 1h 11 n

xc

2f

(w − wc)2 (n Q ., w Q w+
c ), (2.13)

uniformly in w, where h(x) is the finite-size scaling function h(x)=
;.

k=0 fkxk/C(kf+h), where C(z) denotes the Gamma function, and the
coefficients fk appear in the Taylor expansion of the scaling function
F(s)=;.

k=0 fksk. This can be used to derive the critical behavior of the
fraction of shared bonds above the phase transition (10) for 1 < c < 2,

h(w)=A(w − wc)
2 − c
c − 1 (w Q w+

c ), (2.14)

for some constant A > 0. In our case Fa(s)=1/(1 − as), we have ha(x)
=eax, if h=1. For 0 < h=c − 1 < 1 and h rational, the finite size scaling
function can be expressed in terms of hypergeometric functions. For the
case c=3/2=h+1, which will be relevant below, we get

ha(x)=
1

`p
+axe(ax)2

(1+erf(ax)), (2.15)

where erf(x)=2/`p >x
0 e−t2

dt denotes the error function.

2.4. Loop Statistics

Within a given PS model, consider the set of all chains of length n with
m contacts. Denote the number of loops of length 2l in this set by gm, n, l.
Define the generating function

L(x, w, y)= C
m, n, l

gm, n, l wmxny l. (2.16)
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Again, due to the directedness of the model, this generating function can be
expressed in terms of the loop generating function U=U(x), Ū=U(xy)
and the path generating function V=V(xw). An argument as in Section 2.1
yields

L(x, w, y)=VŪV+(VŪVUV+VUVŪV)+ · · ·

=VŪV(1+2UV+3(UV)2+ · · · )

=VŪV
1

(1 − UV)2=U(yx) Z2(x, w). (2.17)

The generating function for the total number of loops is then given by
setting y=1,

T(x, w)=L(x, w, 1)=U(x) Z2(x, w), (2.18)

and the generating function for the sum of all loop lengths is given by

S(x, w)=y
d

dy
L(x, w, y):

y=1
=xUŒ(x) Z2(x, w). (2.19)

The finite size behavior of these quantities about the phase transition can
be computed from the scaling function results of Section 2.3. For the total
number of loops, we get

lim
w Q w+

c

[xn] T(x, w) ’ Ax−n − 2h
U n2h − 1 (n Q .), (2.20)

where A > 0 is some amplitude,7 and for the number of loops of length 2l,

7 In order to simplify notation, we will denote all following amplitudes by the letter A, with
the convention that their values may be different.

we get

lim
w Q w+

c

[xny l] L(x, w, y) ’ p2lx
l − n − 2h
U n2h − 1 (n Q .)

% Al−cx−n − 2h
U n2h − 1 (1 ° l ° n, n Q .).

(2.21)

Note that we obtained (2.21) under the assumption that l is asymptotically
large but that l ° n. This is due to the estimate [y l] U(yx)=p2l x l ’ p2l x

l
U

for x Q x−
U and l finite, but p2l ’ Ax−l

U l−c for l Q ., where we assumed
(2.8) to be valid.
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For the sum of the loop lengths, we distinguish between the cases
1 < c < 2 and c > 2, where the derivative of the loop generating function
UŒ(x−

U) is finite or infinite at the critical point. We find

lim
w Q w+

c

[xn] S(x, w) ’ ˛Ax−n − c
U nc − 1 (1 < c < 2)

Ax−n − 2
U n (c > 2)

(n Q .). (2.22)

Let us compute the probability of a loop of length 2l within chains of
length n. We get, in the limit w Q w+

c , for the loop length distribution

P(l, n)= lim
w Q w+

c

[xny l] L(x, w, y)
[xn] T(x, w)

% Al−c (1 ° l ° n, n Q .).
(2.23)

Furthermore, for the mean loop length OlPn we get, in the limit w Q w+
c ,

OlPn= C
n

l=0
l P(l, n)= lim

w Q w+
c

[xn] S(x, w)
[xn] T(x, w)

’ ˛An2 − c (1 < c < 2)

An0 (c > 2)
(n Q .).

(2.24)

The behavior of the mean loop length reflects the nature of the phase tran-
sition: If 1 < c < 2, the mean loop length diverges, such that the transition
is continuous. If c > 2, the mean loop length stays finite, indicating a first
order transition.

3. TWO PROMINENT LOOP CLASSES

Since the critical behavior of PS models is essentially determined by
the properties of loops, PS, (30, 31) and later Fisher, (10) were led to consider
various loop classes (together with straight paths for the double stranded
segments). Whereas PS analyzed loop classes derived from random walks,
Fisher considered loop classes derived from self-avoiding walks.

3.1. Loops and Walks

An oriented, rooted loop of length n is a walk of length n − 1, whose
starting point and end point are lattice nearest neighbors. As usual (ref. 28,
Section 3.2), we identify such loops if they have the same shape, i.e., if they
are equal up to a translation, possibly followed by a change of orientation.
These objects we call unrooted, unoriented loops, or simply loops. Each
loop of length n has at most 2n corresponding walks. If the walks are self-
avoiding, each loop has exactly 2n corresponding walks. The number of
loops of length n is denoted by pn. For example, for self-avoiding loops
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on Z2 we have p4=1 and p6=2. For a given class of walks, the above
description defines the corresponding (unmarked) loop class. Within a
chain structure, two paths are attached to each loop. Different choices for
attachment positions increase the number of (marked) loop configurations
to p̃n \ pn. If we assume the DNA condition that the two paths attached to
a loop bisect it into pieces of equal length, then the number of possible
attachments of two paths to a loop of length n is less than or equal to 2n.
(We distinguish the two strands of a marked loop.) PS and Fisher consider
classes of oriented rooted loops. Self-avoiding oriented rooted loops can be
interpreted as loops with 2n possible attachment positions of paths to a
loop of length n. A similar interpretation for oriented rooted random loops
is not obvious. We stress that these loop classes result in chains which are
not segment-avoiding, as paths will intersect the loops. Both models cannot
therefore represent real (self-avoiding) DNA.

3.2. Oriented Rooted Random Loops

The first simple example of loops, which are discussed by PS, (31) are
oriented rooted random loops derived from random walks. Random walks
on Zd have the generating function Vd(x)=1/(1 − 2dx). The asymptotic
behavior of the number of oriented rooted random loops of length 2n is
given [ref. 28, Appendix A] by

p̃2n ’ A(2d)2n (2n)−d/2 (n Q .). (3.1)

This implies no phase transition in d=2 and a continuous phase transition
in d=3, since the phase transition condition U(x−

U) V(xU) < 1 is satisfied
in d=3: We have

p̃2n= C
k+l+m=n

(2n)!
(k!)2 (l!)2 (m!)2=

((2n)!)2

(n!)4 3F2(−n, −n, −n; 1, −n+1/2; 1/4),
(3.2)

where 3F2(a1, a2, a3; b1, b2; z) is a hypergeometric function. With xU=1/36,
we extracted the amplitude U(x−

U) numerically (14) using the values p̃2n where
n [ 30, getting U(x−

U)=0.51638461326(7). The result follows for straight
paths since 1/(1 − xU)=36/35 and also for random walks since V3(xU)
=6/5.

3.3. Oriented Rooted Self-Avoiding Loops

The PS results led to the question (10) whether accounting for excluded
volume effects within a loop increases the loop class exponent c, which
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might change the order of the phase transition. This led to considering self-
avoiding loops, which are loops derived from self-avoiding walks. (A self-
avoiding walk [ref. 28, Section 1.1] is a random walk which never visits a
vertex twice.) By definition, the self-avoiding loop class fully accounts for
excluded volume interactions within a loop. In d=3, self-avoiding loops
of length n \ 24 may be knotted. Self-avoiding walks and loops are well
studied objects. (18, 28) Fisher considered oriented rooted loops p̃2n=4np2n.
Their loop class exponent c, p̃2n ’ Bmn

d n−c, is related to the mean square
displacement exponent n of self-avoiding walks by the hyperscaling relation
[ref. 28, Section 2.1] c=dn, where n=1/2 for d \ 4, n=0.5877(6) for
d=3 and n=3/4 for d=2. At present, there is no proof for the values of n

in dimensions d [ 4. Explicitly, we have

c=˛d/2 d \ 4

1.7631(18) d=3

3/2 d=2.

(3.3)

For unknotted self-avoiding loops, which is the preferrable model from a
biological point of view, it has been proved (33) that the exponential growth
constant is strictly less than that of all self-avoiding loops, while the expo-
nent (if it exists) is expected to coincide with that of all self-avoiding loops.

Fisher concluded that the above values of the loop class exponent c
imply a continuous phase transition in d=2 and d=3. We have to
check the phase transition condition: In d=2, a numerical analysis of the
oriented rooted SAP series data (19) gives xU=0.1436806285(8) and U(x−

U)=
0.6523866(2). The value of the generating function for straight paths is
1/(1 − xU) < 1.678. In d=3, a corresponding analysis with unknotted
oriented rooted SAP data and SAW data [ref. 28, Appendix C] gives
xU=0.045578(3) and U(x−

U)=0.10(1). The path generating function value
is bounded by that of random walks 1/(1 − 6xU) < 1.38. Thus, the phase
transition condition is satisfied in both d=2 and in d=3 for straight
paths. Note that in d=2, self-avoiding walks as paths will result in no
phase transition, since V(xU) > 2 for such paths, as follows from SAW data
analysis.

4. SELF-AVOIDING POLAND–SCHERAGA MODELS

As discussed above, the previous PS models are not self-avoiding.
Given a particular class of walks, for example, SAW, a PS model with
segment-avoiding chains may be defined as follows. As paths, take only
those walks with extremal first and last vertex: If v(0), v(1),..., v(n) are the
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vertices of an n-step walk v, this walk is taken as a path iff vx(0) <
vx(i) < vx(n) for all 1 < i < n. Such walks are bridges [ref. 28, Section 1.2],
whose last step is in x-direction. For (unmarked) loops, take loops derived
from the walks, as explained in Section 3.1. In our example these will be
SAW loops. Marking of the loops may be achieved in different ways. To
this end, consider for a given loop the sets A l (Ar) of vertices of smallest
( largest) x-coordinate. We distinguish four different types of marking:
complete marking (with DNA constraint), where we mark a loop at all
vertex pairs from A l and Ar (whenever the DNA condition is satisfied),
and unique marking (with DNA constraint), where we only mark a loop at
a single vertex pair, for example the bottom vertex and the top vertex in a
lexicographic ordering (if they satisfy the DNA condition).

If the walk class is self-avoiding walks, this will result in self-avoiding
PS models. Unique marking would then imply p̃n=2pn (we distinguish the
two strands of a marked loop) and hence increase the previous exponents
by one. Hence, such a PS model displays a first order transition with
c=5/2 in d=2 and with c=2.7631(18) in d=3. (The phase transition
condition is satisfied, as follows from the values U(x−

U) given in Section 3.3,
and from the estimate V(xU) < 1/(1 − dxU) − 1 for bridges with last step in
x-direction.) Unique marking with DNA constraint results in p̃n [ 2pn. If
we assume that the exponential growth constant for marked self-avoiding
loops is still given by md (which we expect to be true, compare Section 5.2),
this implies a critical exponent c greater or equal to the model with unique
marking, i.e., a first order phase transition in d=2 and d=3. For
complete marking, we have 2pn [ p̃n [ 2npn, which rules out a decrease of
c by more than one. We however expect that the number of possible
markings is of order 1 as n Q ., such that c remains unchanged, and the
model again displays a first order phase transition. Similar considerations
apply for the case of complete marking with DNA constraint.

5. DIRECTED POLAND–SCHERAGA MODELS

We present two classes of directed PS models which are exactly solv-
able and, by definition, take into account excluded volume interactions
between all parts of the structure. The first class is derived from fully
directed walks and is solvable in arbitrary dimension. (15) We will give
explicit expressions for the generating function in d=2 and in d=3. This
extends, (24–27) where the critical behavior has been derived. The model
displays a first order phase transition only for d > 5. The second class,
derived from partially directed walks, is considered in d=2 only. Different
variants of the second model display both a first order phase transition and
a continuous phase transition in d=2.
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5.1. Fully Directed Walks and Loops

This directed PS model consists of fully directed walks for the paths in
the chain. These only take steps in positive directions. The corresponding
loops are staircase polygons, which consist of two fully directed walks,
which do not intersect or touch, but have a common starting point and end
point. Paths are attached to these points. We distinguish the two strands of
a loop. This model satisfies all the assumptions discussed in Section 2.1,
and also satisfies the DNA condition that the two segments of the loops
are the same length.

In d=2, the generating functions for paths and marked loops are (18)

V(x)=
1

1 − 2x
, U(x)=1 − 2x − `1 − 4x. (5.1)

U(x) is twice the generating function of staircase polygons. The loop class
exponent is c=3/2. We have xV=1/2, xU=1/4, and wc=1, i.e., a phase
transition at T=.. (If the empty path would not be allowed, a phase tran-
sition occurred at a finite temperature.) The free energy f(w) is given by

f(w)=log 1 2(w − 1)2

`1+(w − 1)2 − 1
2 (1 [ w < .). (5.2)

The fraction of shared bonds follows as

h(w)=
2w

w − 1
`1+(w − 1)2 − 1 − (w − 1)2/2

1+(w − 1)2 − `1+(w − 1)2
(1 [ w < .), (5.3)

which approaches zero linearly in w − 1. The asymptotic behavior of Zn(w)
about w=1 is given by

Zn(w) ’
4n − 1

n1/2 h`n/8(w − 1) (n Q ., w Q 1+), (5.4)

uniformly in w, where ha(x) is given by (2.15).
The PS model of fully directed walks and loops is exactly solvable in

arbitrary dimension. (15) Consider fully directed walks on Zd. If there are ki

steps in direction i, the number of distinct walks, starting from the origin,
is given by the multinomial coefficient ( k1+k2+ · · · +kd

k1, k2,..., kd
). This results in Vd(x)=

1/(1 − dx). The generating function of a pair of such walks is given by

Z2d(x)= C
.

k1, k2,..., kd=0

1k1+k2+ · · · +kd

k1, k2,..., kd

22

xk1+ · · · +kd. (5.5)
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The generating function Z2d(x) can be interpreted as a chain, where each
link consists of a staircase polygon or a double bond. Thus, it is related to
the generating function Ud(x), where staircase polygons are counted twice,
by

Z2d(x)=
1

1 − (dx+Ud(x))
. (5.6)

The functions Z2d(x) satisfy Fuchsian differential equations of order d − 1,
from which the singular behavior of Z2d(x), and hence of Ud(x) can be
derived. (15) In dimensions 2 < d < 5, Ud(x) can be expressed in terms of
Heun functions. We get in d=3

Z2 2
3(x)=12

p
22

(1 − 9x)−1 (1 − x)−1 K(k+) K(k− ), (5.7)

where K(k) is the complete elliptic integral of the first kind, and

k2
±=

1
2

±
x1

4
(4 − x1)

1
2 −

1
4

(2 − x1)(1 − x1)
1
2

x1=−
16x

9x2 − 10x+1
.

(5.8)

We have xU=1/9. In arbitrary dimension d \ 3, it has been shown (15) that
the models have a critical point xU=1/d2 with exponent c=(d − 1)/2,
with logarithmic corrections in d=3. Noting that Ud(x−

U)=1 − 1/d −
1/Z2d(x−

U) and Vd(xU)=d/(d − 1), we conclude that the phase transition
condition Ud(x−

U) Vd(xU) < 1 is satisfied iff Z2d(x−
U) < .. This is the case (15)

in d \ 4. For the corresponding PS model, the phase transition is thus first
order for d \ 6, and we have a continuous phase transition in dimensions
2 [ d [ 5, being at finite temperature in d \ 4 only.

5.2. Partially Directed Walks and Loops

We consider a directed PS model, where paths are partially directed
walks on the square lattice Z2. These walks are self-avoiding and not
allowed to take steps in the negative x direction. The number of paths of
length n can be obtained (18) by considering the ways a walk of length n can
be obtained from a walk of length n − 1. This yields the path generating
function

V(x)=
1+x

1 − 2x − x2 , (5.9)
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Fig. 1. A column-convex polygon.

whose dominant singularity is a simple pole at xV=1 − `2. The associated
loop class is column-convex polygons, which has been analyzed in ref. 7,
see Fig. 1 for an example. We assume unique marking as explained in
Section 4. The (unmarked) loop generating function U(x) satisfies the
algebraic equation of order four [ref. 7, Eq. (5.2)]

0= − (x − 1)4 x2+(x3 − 7x2+3x − 1)(x − 1)3 U(x)

+2(2x3 − 11x2+10x − 4)(x − 1)2 U(x)2

+(5x3 − 35x2+47x − 21)(x − 1) U(x)3

+(2x3 − 23x2+38x − 18) U(x)4. (5.10)

The dominant singularity at xU=x2
V=3 − 2 `2 is a square-root singular-

ity with an exponent c=3/2. The critical amplitude is given by U(x−
U)=

0.086983(1). Thus 2U(x−
U) V(xU) < 1. This implies a continuous phase

transition for the PS model at wc=1.922817(1).
However, the loop class defined above does not obey the DNA con-

straint, which might increase the exponent c. Using standard techniques, (7)

it is possible to derive a functional equation for the generating function of
column-convex polygons counted by perimeter and, in addition, by their
upper and lower walk length. The corresponding expression is, however,
much more difficult to handle than (5.10), and there seems to be no practi-
cal way to extract the loop class exponent for the model with DNA con-
straint. On the other hand, it is possible to bound the loop class exponent
from above by considering a refined (artificial) model. As we will argue
below, this refined model has a loop class exponent c=5/2. For the
former model, we thus expect a value of 3/2 [ c [ 5/2, with a value of
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c=2 seeming plausible. This PS model would then be at the border
between a first order and a continuous phase transition.

For the refined model, let us further assume that the upper and lower
walk in a loop are not allowed to touch the x-axis. The loop class of the
refined model can be described in terms of bar-graph polygons. (32) These
are column-convex polygons, one of whose walks is a straight line. Loops
are composed of two bar-graph polygons, one of them in the half-plane
y \ 0, the other in the half-plane y [ 0. Both polygons have the same
horizontal coordinates and are constrained to have equal walk lengths.
Paths of the model are partially directed walks, which are attached to the
two loop vertices with vertical coordinate zero.

Let gm, n denote the number of bar-graph polygons with 2m horizontal
and 2n vertical steps. The anisotropic perimeter generating function G(x, y)
=; gm, nxmyn satisfies an algebraic equation of degree two, (32)

G(x, y)=xy+(y+x(1+y)) G(x, y)+xG2(x, y). (5.11)

A generalization of the Lagrange inversion formula (12) can be used to
obtain a closed formula for its series coefficients. It is

[xmyn] G(x, y)=gm, n= C
n

k=0

1
m+k

1m+k
m

21 m
n − 1 − k

21 m
n − k

2 . (5.12)

The number p2n of all combinations of bar-graph polygons subject to equal
walk lengths is then

p2n= C
(n − 1)/2

k=1
g2

n − 2k, k. (5.13)

The first few numbers p2n are 1, 1, 2, 10, 38, 126, 483, 126, 483,... for n=
3, 4, 5,... . We used standard methods of numerical series analysis (14) to
estimate the critical point and critical exponent of U(x). An analysis
with first order differential approximants, using the coefficients p2n for
70 [ n [ 80, yields the estimates

xU=0.17157287(1), c=2.5000(1). (5.14)

This is, to numerical accuracy, indistinguishable from xU=3 − 2 `2=
0.171572875253..., as expected, and c=5/2. Note that the phase transition
condition 2U(x−

U) V(xU) < 1 is satisfied, since the loop generating function
is bounded by that of column-convex polygons, which is known to satisfy
the above inequality.
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6. MODELS EXTENDING THE POLAND–SCHERAGA CLASS

The PS model with oriented rooted self-avoiding loops, (10) reviewed
in Section 3.3, displays a continuous phase transition in d=2 and d=3.
This led to the question whether introducing excluded volume effects
between different segments of the chain can change the nature of the tran-
sition. (1, 3, 8, 9, 20, 21, 23) In Section 4, we introduced self-avoiding PS models in
order to answer that question in the affirmative, staying within the PS
class.

Another approach, which extends the PS class, consisted in simula-
tions of self-avoiding walk pairs. (1, 3, 8, 9) We emphasize that these models are
not PS models as defined in this paper, and that loop class exponents as
defined in (2.8) bear no meaning for these models. The appropriate gener-
alization is the exponent cŒ of the loop length distribution P(l, n) of the
chain, which is assumed to behave in the limit w Q w+

c like (2, 3, 8, 20, 21, 23)

P(l, n) % l−cŒg(l/n) (1 ° l [ n, n Q .), (6.1)

where g(x) is a scaling function, assumed to be constant in some anal-
yses. (2, 20, 21, 23) Then, the same conclusions as in Section 2.2 about the nature
of the phase transition determined by the loop length distribution exponent
cŒ hold. This follows from the behavior of the mean loop length OlPn in the
limit w Q w+

c , which is obtained from (6.1) by integration,

OlPn= C
n

l=0
l P(l, n) % An2 − cŒ (n Q .). (6.2)

If 1 < cŒ < 2, the mean loop length diverges, indicating a continuous tran-
sition. If cŒ > 2, the mean loop length stays finite, indicating a first order
transition. (2, 8) Note that assumption (6.1) is not fully consistent with PS
models: The behavior (2.23) is consistent with (6.1), which justifies the use
of the same name for the two exponents. We found (6.2) to be satisfied for
PS models if 1 < c < 2 in Section 2.4. If c > 2, however, the mean loop
length exponent is independent of c for PS models—see (2.24). This implies
that a scaling form like (6.1) cannot hold for PS models with loop class
exponent c > 2.

The simulation results are cŒ=2.44(6) in d=2 (3) and cŒ=2.14(4) in
d=3, (1) indicating a first order phase transition in d=2 and in d=3. This
led to the conclusion that introducing excluded volume effects between dif-
ferent segments to the PS model of oriented rooted self-avoiding loops
drives the transition from continuous to first order. (20, 21, 23) The perturbative
analytic arguments using the theory of polymer networks (20, 21, 23) yield a
very good approximation to the value of the loop length distribution
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exponent found in simulations. This suggests that the main mechanism
responsible for the change of critical behavior in the PS model of oriented
rooted self-avoiding loops is due to ‘‘local’’ excluded volume effects arising
from forbidden attachments of paths to loops.

7. CONCLUSION

We discussed PS models with emphasis on the order of their phase
transitions. We re-analyzed the old model of oriented rooted self-avoiding
loops (10) and found that the resulting PS model is not self-avoiding. Hence
the conclusions about the order of the phase transition, which are most
relevant to the recent discussions, (1–3, 8, 9, 16, 20–23) rely on a model where most
chain configurations are not self-avoiding and thus cannot represent real
DNA. Our self-avoiding PS model (unique marking, with self-avoiding
bridges and (unrooted) self-avoiding loops as defined in Section 4) yields
a first order phase transition in both d=2 and d=3. It is expected that the
other variants considered in Section 4 also yield a first order phase transi-
tion, but a detailed (numerical) analysis is needed to answer this question,
as in the discussion in Section 4.

For the presumably more realistic model of pairs of interacting self-
avoiding walks, (1, 3, 8, 9, 20, 21, 23) our results suggest an interpretation of
excluded volume effects, which complements the common one. (20, 21, 23) The
self-avoiding PS models of Section 4 correctly account for excluded volume
effects within a loop, but overestimate excluded volume effects between
different segments of a chain, due to their directed chain structure. Since
this leads to a first order phase transition in d=2 and d=3, we conclude
that the relaxation of excluded volume effects between different segments
of the chain does not change the nature of the transition.

We also discussed several directed examples. One of these models
displays a first order phase transition in d=2. Despite being exactly solv-
able, these models seem to be of limited relevance to the biological problem
due to their directed structure and other limitations.

The key question, as to which effects are responsible for the observed
behavior in real DNA, is only partially answered by these results. With
respect to directed models, which also account for different base pair
sequences, it seems surprising however that simulations of melting curves (4, 35)

agree so well with experimental curves. In these simulations, a heuristic
critical exponent accounting for the statistical weight of internal loops has
to be inserted. It has recently been suggested (5) that a value more realistic
than the commonly used Fisher loop class exponent (10) c % 1.763 might be
the loop length distribution exponent of the polymer network approxima-
tion (20) cŒ % 2.115. This suggestion implicitly assumes that the loop length
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distribution exponent of a non-directed model can be interpreted as an
‘‘effective’’ loop class exponent within a directed model. Although appear-
ing plausible, it seems difficult to give this assumption a quantitative
meaning. On the other hand, the MELTSIM simulation approach (4) is
robust against a change of parameters. Indeed, melting curves can be
simulated with satisfactory coincidence for both exponents, if the coopera-
tivity parameter for the loops is adjusted accordingly. (5) It would certainly
be illuminating to obtain such simulated melting curves from a self-avoid-
ing walk pair modeling. (1, 3, 8, 9) We also mention the recent debate about the
relevance of the self-avoiding walk pair model to real DNA. (16, 22)

The stiffness of the double stranded segments does not seem to quali-
tatively alter the critical properties of chains, (8) as can be seen by compar-
ing the PS model result of Section 2.1, showing that critical properties are
largely independent of the path generating function. The corresponding
question of introducing energy costs for bending and torsion to single
stranded segments has, to our knowledge, not been discussed. Even within
the PS class, it is not clear how this affects the loop class exponents, since
the changes just discussed might lead to loop classes with different expo-
nential growth constants, but there is no argument as to how the exponents
might change.

In conclusion, the question of the mechanisms applying in real DNA
which are responsible for the denaturation process and which explain mul-
tistep behavior as observed in melting curves, are still far from being satis-
factorily answered in our opinion.
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